skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balalsoukas-Slimining, Alexios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nonlinearities of power amplifiers in massive MIMO arrays introduce unwanted spectral regrowth, which is typically avoided via digital predistortion at each amplifier. However, as the number of base station antennas scales up, so does the computational burden of per-antenna linearization. This work introduces a neural-network virtual digital predistortion (vDPD) scheme that operates before the linear precoder for OFDM-based massive MU-MIMO systems. By applying predistortion before the precoder, complexity scales primarily with the number of users. We can achieve comparable linearization along the user beams by training our neural network based on the memory polynomial, predistortion-per-antenna approach. We verify our algorithm through an exhaustive simulator that includes high-order amplifier nonlinearities, memory effects, and variance across the amplifier models. 
    more » « less